Evolutionary optimization with active learning of surrogate models and fixed evaluation batch
نویسندگان
چکیده
Evolutionary optimization is often applied to problems, where simulations or experiments used as the fitness function are expensive to run. In such cases, surrogate models are used to reduce the number of fitness evaluations. Some of the problems also require a fixed size batch of solutions to be evaluated at a time. Traditional methods of selecting individuals for true evaluation to improve the surrogate model either require individual points to be evaluated, or couple the batch size with the EA generation size. We propose a queue based method for individual selection based on active learning of a kriging model. Individuals are selected using the confidence intervals predicted by the model, added to a queue and evaluated once the queue length reaches the batch size. The method was tested on several standard benchmark problems. Results show that the proposed algorithm is able to achieve a solution using significantly less evaluations of the true fitness function. The effect of the batch size as well as other parameters is discussed.
منابع مشابه
Expensive Optimisation: A Metaheuristics Perspective
Stochastic, iterative search methods such as Evolutionary Algorithms (EAs) are proven to be efficient optimizers. However, they require evaluation of the candidate solutions which may be prohibitively expensive in many real world optimization problems. Use of approximate models or surrogates is being explored as a way to reduce the number of such evaluations. In this paper we investigated three...
متن کاملKL-based Control of the Learning Schedule for Surrogate Black-Box Optimization
This paper investigates the control of an ML component within the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) devoted to black-box optimization. The known CMA-ES weakness is its sample complexity, the number of evaluations of the objective function needed to approximate the global optimum. This weakness is commonly addressed through surrogate optimization, learning an estimate of t...
متن کامل Structure Learning in Bayesian Networks Using Asexual Reproduction Optimization
A new structure learning approach for Bayesian networks (BNs) based on asexual reproduction optimization (ARO) is proposed in this letter. ARO can be essentially considered as an evolutionary based algorithm that mathematically models the budding mechanism of asexual reproduction. In ARO, a parent produces a bud through a reproduction operator; thereafter the parent and its bud compete to survi...
متن کاملBoosted Surrogate Models in Evolutionary Optimization
The paper deals with surrogate modelling, a modern approach to the optimization of empirical objective functions. The approach leads to a substantial decrease of time and costs of evaluation of the objective function, a property that is particularly attractive in evolutionary optimization. In the paper, an extension of surrogate modelling with regression boosting is proposed. Such an extension ...
متن کاملVerification of an Evolutionary-based Wavelet Neural Network Model for Nonlinear Function Approximation
Nonlinear function approximation is one of the most important tasks in system analysis and identification. Several models have been presented to achieve an accurate approximation on nonlinear mathematics functions. However, the majority of the models are specific to certain problems and systems. In this paper, an evolutionary-based wavelet neural network model is proposed for structure definiti...
متن کامل